

## SKYRANGER LW

ROTAX 912/ 912ULS 80 / 100 HP JABIRU 80 HP, Rotax 618 75HP, Rotax 582 65HP

## MANUEL D'UTILISATION



Référence: MUSKR LW V2 -11-2018

## **SOMMAIRE**

| A - Généralités :                                       |
|---------------------------------------------------------|
| A.0 - Avertissement                                     |
| A.1 - Descriptif de l'ULM                               |
| A.2 - Moteur, réducteur et hélice                       |
| A.3 - Plan 3 vues                                       |
| A.3 - 1 fair 5 vacs                                     |
| B - Limitations :                                       |
| B.1 - Masses 6                                          |
| B.1.1 - Masse maximale6                                 |
| B.1.2 - Masse à vide maximale6                          |
| B.1.3 - Charge utile6                                   |
| B.2 - Vitesses 6                                        |
| B.2.1 - Vitesse maximale6                               |
| B.2.2 - Vitesse de décrochage                           |
| B.2.3 - Vitesse minimale sans volets6                   |
| B.3 Facteurs de charge de manoeuvre6                    |
| B.4 - Limites de masse et de centrage6                  |
| B.5 - Manoeuvres autorisées8                            |
| B.6 - Groupe motopropulseur8                            |
| B.7 - Puissance maximale déclarée9                      |
| B.8 - Régime maximal9                                   |
| B.9 - Vitesse de rotation maximale de l'hélice          |
| B.10 - Type de réducteur et rapport d'hélice9           |
| B.11 - Nuisances sonores                                |
| B12 - Tableau indicatif des performances et précautions |
| C - Procédures d'urgence :                              |
| C.1 - Panne moteur                                      |
| C.1.1 - Au décollage                                    |
| C.1.2 - En vol                                          |
| C.2 - Remise en route du moteur en vol                  |
| C.3 - Fumée et feu                                      |
| C.4 - Vol plané                                         |
| C.5 - Atterrissage d'urgence                            |
| C.6 - Autres urgences                                   |
| D - Procédures normales :                               |
| D.1 - Visite prévol13                                   |
| D.2 - Mise en route                                     |
| D.3 - Décollage                                         |
| D.4 - Croisière                                         |
| D.5 - Atterrissage                                      |
| D.6 - Après atterrissage et arrêt du moteur             |

## **E - Performances :**

| E.1 - Preamble                                                         | 15 |
|------------------------------------------------------------------------|----|
| E.2 - Decollage                                                        | 15 |
| E.3 - Atterissage                                                      | 15 |
| E.4 –Finesse maximale                                                  | 15 |
| E Maggag et contrageg équinoments :                                    |    |
| F - Masses et centrages, équipements :                                 |    |
| F.1 - Masse à vide de référence                                        |    |
| F.2 - Centrage à vide de référence                                     |    |
| F.3 - Configuration de l'ULM choisie pour la masse à vide de référence |    |
| F.4 - Liste des équipements                                            |    |
| F.5 - Masse et centrage                                                |    |
| F.6 - Méthode de pesée                                                 | 16 |
| G - Montages et réglages :                                             |    |
| G.1 - Consignes de montage et démontage                                | 16 |
| G.1.1 - Montage des ailes                                              |    |
| G.1.2 - Repliage des ailes                                             |    |
| G.1.3 - Manoeuvre de l'appareil au sol                                 |    |
| G.2 - Liste des réglages accessibles                                   | 17 |
| G.2.1 - Réglage des volets                                             | 17 |
| G.2.2 - Réglage des ailerons                                           | 17 |
| G.2.3 - Réglage de la gouverne de direction                            |    |
| G.2.4 - Réglage des palonniers                                         | 17 |
| H - Autres utilisations :                                              |    |
| H.1 - Répercussions du montage éventuel de tout équipement spécial     | 19 |
| H.1.1 - Bagages                                                        |    |
| H.1.2 - Parachute                                                      | 19 |
| H.1.3 - Skis                                                           | 19 |
| H.1.4 - Matériel photo et vidéo                                        | 19 |
| H.1.5 - Flotteurs                                                      |    |
| H.1.6 - Crochet pour banderole                                         |    |
| H.1.7 - Epandage agricole                                              |    |
| H.1.8 - Largage de parachutiste                                        | 20 |
| 1 - Frene de reception .                                               |    |
| I.1 - Avertissement                                                    |    |
| I.2 - Mesures au sol                                                   | 2  |
| I.3 - Centrage                                                         | 22 |
| I.4 - Mesures en vol                                                   |    |
| I.5 - Mentions à porter sur l'indicateur de vitesse                    |    |
| I.6 - Plaque signalétique                                              |    |
| I.7 - Référence de votre ULM                                           | 24 |
| AUTRE : Modèle de fiche de pesée                                       | 25 |

#### **A - GENERALITES:**

#### A.0 - Avertissement:

Vous avez choisi un ULM qui répond à l'arrêté du 23 septembre 1998 (JO du 1er novembre 98), à savoir :

- un principe simple de conception : tubes et toile,
- une robustesse générale démontrée : dossier de calcul, essais statiques, essais en vol et plusieurs centaines d'appareils diffusés,
- une aptitude d'évolution moteur arrêté pour réaliser un atterrissage en campagne dans des conditions de sécurité satisfaisantes.
- un pilotage facile qui ne demande pas des qualités exceptionnelles de la part du pilote,
- un entretien simple, toutes les parties de l'ULM étant facilement accessibles et visibles.

C'est maintenant de <u>votre responsabilité</u> de déclarer l'aptitude au vol de votre ULM. Pour cela vous devez respecter l'arrêté du 23 septembre 1998 et suivants qui définit les conditions réglementaires pour qu'un ULM soit exempté de l'obligation d'obtenir un document de navigabilité valable pour la circulation aérienne, à savoir :

- a) les conditions techniques générales de conception applicables à la date du premier visa de sa carte d'identification, sont respectées,
- b) les éventuelles conditions techniques spéciales de conception notifiées par le ministre chargé de l'aviation civile, sont appliquées,
- c ) l'ULM est conforme à la partie descriptive de sa fiche d'identification,
- d) les modifications éventuelles ont été effectuées conformément à l'arrêté,
- e) les règles particulières édictées par le ministre chargé de l'aviation civile sous forme de consignes opérationnelles ou de consignes de navigabilité, sont respectées,
- f) l'ULM a été entretenu conformément à son manuel d'entretien,
- g) à la suite d'un incident ou d'un accident, l'ULM a été remis en état,
- h) l'expérience n'a pas montré que l'ULM présente des risques ou des dangers graves qui n'auraient pas été prévus lors du visa de la carte d'identification.

Demandez à votre revendeur la dernière version des notices techniques pour vérifier les points de vérifications importants.

La vente d'un SkyRanger peut se faire cellule nue en kit, livrée avec un moteur, ou appareil livré en état de vol. Les informations suivantes sont par conséquent générales, la fiche annexe de réception mentionnent les caractéristiques propres de votre appareil en fonction de son état de montage. Si vous avez monté vous-même votre appareil, vous devez demander une identification provisoire auprès de votre District aéronautique pour faire les essais en vol afin remplir cette fiche. Vous devez ensuite faire une demande de carte d'identification. La présentation de ce manuel est conforme aux exigences du nouvel arrêté ULM.

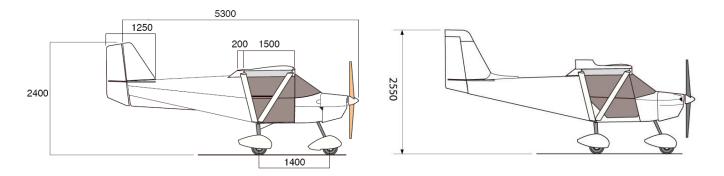
#### A.1 - Descriptif de l'ULM:

Les principaux éléments sont constitués de :

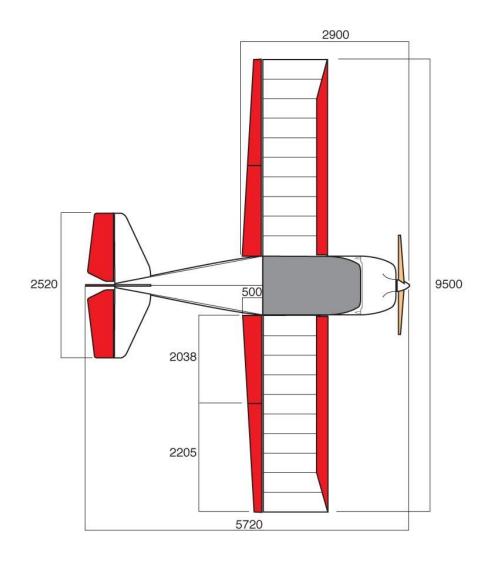
- la cellule réalisée par un assemblage de tubes aluminium boulonnés
- les 2 ailes, les 4 haubans de liaison à la cellule, les ailerons et les volets
- la motorisation constituée du moteur et de son bâti, du réducteur, de l'hélice
- l'empennage horizontal, ses deux parties fixes et mobiles
- l'empennage vertical et sa partie mobile
- les commandes de vol et de volets, les commandes de motorisation, les commandes de frein
- le train principal, le train avant ou arrière selon la version
- les éventuels équipements annexes (parachute ou flotteurs).

#### A.2 - Moteur, réducteur et hélice :

Le moteur reste de marque indifférente, deux temps ou quatre temps à condition :


- il doit développer une puissance maximale inférieure ou égale à 100 CV (rotax 912 uls) en continu. Cette valeur est celle portée sur le manuel moteur
- de présenter une masse totale équipée compatible avec les limites de masse et de centrage.

Le réducteur ne doit pas dépasser un rapport de réduction de 1/3,5. A partir de 1/4, l'appareil peut présenter des difficultés au pilotage, en particulier lors du décollage.


L'hélice peut être de marque indifférente à condition de :

- rester dans les limites de moment d'inertie mentionnées dans le manuel de montage moteur et de son réducteur
- ne pas dépasser un diamètre compatible avec une garde au sol d'au moins 20 cm, l'ULM en position repos sans chargement.

#### A.3 - Plan 3 vues LW:



Version 1 et version 2 de la empennage verticale



## **B-LIMITATIONS**

#### B.1 - Masses:

#### **B.1.1 - Masse maximale:**

L'appareil ne peut en aucun cas dépasser au décollage :

- 450 kg s'il n'est pas équipé d'un parachute de secours ou de flotteurs,
- 472,5 kg s'il est équipé d'un parachute de secours ou de flotteurs.

La gestion de la masse totale au décollage relève exclusivement du pilote.

#### **B.1.2** - Masse à vide maximale :

Elle ne peut être supérieure réglementairement à la masse maximale moins 156 kg pour l'équipage poids standart et une consommation correspondant à une heure de vol. Elle se situe à une valeur proche maxi de 284 kg. sans parachute et flotteurs, 306 kg dans le cas contraire. Cette masse ne comprend pas le carburant, les personnes à bord, les bagages.

A noter que la masse à vide de référence doit correspondre à la masse à vide réelle de votre appareil.

#### **B.1.3** - Charge utile:

Elle est calculée en retirant de la masse maximale autorisé au décollage, la masse à vide <u>réelle</u> de votre appareil. Une pesée s'impose par conséquent pour connaître la charge utile qui vous permettra de gérer le total des masses de l'équipage, du carburant (densité essence de 0,7) et des bagages.

A titre indicatif, votre charge utile est de l'ordre de :

188 kg avec un appareil dont la masse à vide est de 262 kg (Par ex moteur 912 sans parachute)

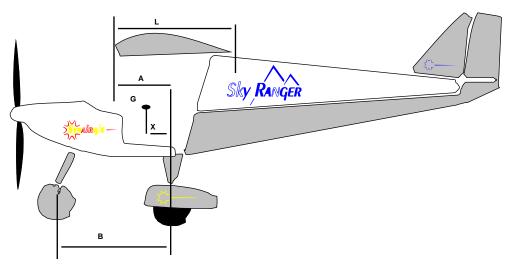
- B.2 Vitesses: (dans les conditions standard 1013 hPa, 15 °C, à la masse maximale autorisée)
- B.2.1 Vitesse maximale, dite Vne: 89 KTS ou 165 km/h
- B.2.2 -. Vitesse de décrochage dite Vso : 64 km/h (avec plein volets à 472,5 kg, environ 62 km/h à 450 kgs)
- B.2.3 Vitesse minimale à laquelle le palier peut être maintenu sans volets : 72 km/h à 472,5 kg et 70 km/h à  $450\ kg$

#### **B.3 - Facteurs de charge de manoeuvre :**

En aucun cas vous ne devez dépasser + 4 g en positif et - 2 g en négatif (g représentant le facteur de charge). L'appareil a été calculé pour ces valeurs. Vous risquez une déformation permanente de la structure au-delà de ces facteurs de charge et une rupture au-delà de + 6 g et - 3 g.

Pour rester dans un domaine de vol sûr, vous devez :

- ne pas effectuer des virages stabilisés à plus de 60° d'inclinaison
- ne pratiquer aucune figure de voltige qui reste rigoureusement interdite
- ne pas effectuer de plein débattement brutal des commandes au-dessus de 120 km/h. A noter qu'en dessous de cette vitesse, vous risquez de décrocher brutalement la machine
- ne pas dépasser 125 km/h dans les conditions turbulentes
- ne pas dépasser la Vne de 165 km/h.


#### **B4 - Limites de centrage :**

Cette étape est très importante et va permettre de savoir exactement les valeurs de centrage de votre appareil en fonction du moteur et des différentes options choisies (dont les masses interviennent sur les centrages comme le réducteur, l'hélice, le démarreur, la batterie, l'essence, les bagages, etc...)

L'appareil étant en contact d'un sol <u>horizontal (train en état non déformé, incidence de l aile environ 3 deg)</u>, vous devez connaître exprimé en centimètres :

- A : la distance du bord d'attaque (par un fil à plomb qui vient jusqu'au sol) à la ligne qui joint les points de contact des 2 roues principales (tracer un trait au sol).
- B: la distance entre les points de contact sol des roues principales et de la roue avant.

On prendra la corde de référence L moyenne de l'aile égale à 148 cm.



A l'aide de bascules, balances ou de 2 pèse-personnes réunis par une planche indéformable (nécessaire sur chaque roues arrières car le poids dépasse les 150 kg), Ne pas oublier de mettre des cales sous les roues pour conserver l'appareil bien horizontal sur les balances.

Les balances devront aussi reposer sur un sol plat ou sur des planches rigides. Si vous ne retrouvez pas à chaque étape l'augmentation de masse en faisant la somme des masses sur les 3 roues, c'est que vos balances présentent un problème (charge trop ponctuelle ou mauvaise répartition).

Il faut faire les mesures suivantes pour les cas 1 à 4 suivants :

May: masse sur la roue avant

Mard: masse sur la roue principale droite Marg: masse sur la roue principale gauche

- 1: appareil à vide, sans essence
- 2: une personne à bord de 55 kg si possible légère (centrage limite avant en utilisation, sans essence)
- 3: deux personnes à bord (proche de 156 kg) avec le plein d'essence mais sans bagage (permet dans le cas suivant de positionner les bagages pour rester dans la limite de masse maximale et de centrage)
- 4: deux personnes à bord, le plein d'essence, les bagages et le parachute éventuel (sans dépasser la masse totale de 450 kg ou de 472,5 kg si présence d'un parachute ou de flotteurs)

Vous pouvez maintenant calculer pour chacun des cas 1 à 4, la position du centre de gravité exprimé en pourcentage de la corde de référence. Il suffit d'écrire que le moment de la résultante totale du poids au centre de gravité G (Mav + Mard + Marg) par rapport à la trace au sol de l'axe des roues principales est égal au moment du poids sur la roue avant par rapport à cette même trace au sol de l'axe des roues principales.

X: distance entre le centre de gravité G et la trace au sol de l'axe des roues principales.

$$X = (Mav \times B) / (Mav + Mard + Marg)$$

Le centrage devient (position de G sur la corde)

C%: qui est la valeur de centrage en %

$$C\% = (A - X) / 148$$

Vous devez déterminer dans le cas 4, le poids des bagages que vous pourrez mettre en respectant le poids maximal de 450 kg ou 472,5 kg et les 35 % maxi de centrage arrière.

La fiche de centrage est obligatoirement reportée dans la fiche de réception à la fin du manuel de montage et reproduite ci après.

# Dans tous les cas, le centrage doit se trouver entre : 20 % à vide et 35 % Max en progressant du cas 1 au cas 4

En vol sur le skyranger, si la cornière alu fixant le bord d'attaque des plans fixes des empennages touche au tube sup de fuselage arrière (position maxi haute), il ne doit pas y avoir d'effort à pousser sur le manche (vitesse +/- 100 km:h sans compensateur, ou trim en position neutre centrale). Si tel

était le cas, le centrage est trop arrière et vous devez reporter des masses vers l'avant (batterie, bagages etc...)

## NE JAMAIS VOLER AINSI, Contactez votre revendeur.

Le comportement en vol de votre ULM dépend du respect de ce centrage. Vous pourrez intervenir sur le centrage d'origine en faisant varier la position de la batterie ou du coffre à bagages.

Pour un train <u>tricycle</u> (roue avant), on doit vérifier en vol que l'appareil :

- au décollage, peut lever la roue avant à environ 80% de la vitesse de décrochage (vers 50 km/h). C'est le centrage avant qui devient prépondérant.
- à l'atterrissage, on doit se poser sur le train principal. C'est aussi le centrage avant qui est prépondérant car trop de centrage avant risque de rendre la profondeur inefficace au moment de l'arrondi.

Pour la version train classique (roue arrière), on doit vérifier :

- au décollage, l'appareil doit pouvoir se mettre en ligne de vol à environ 80% de la vitesse de décrochage (vers 50 km/h). S'il est trop centré arrière, vous ne pourrez pas contrôler le décollage par manque d'efficacité sur la profondeur.
- à l'atterrissage, l'appareil doit pouvoir se poser 3 points, c'est le centrage avant qui devient prépondérant.

Dans les deux versions, un centrage trop arrière risque de rendre votre ULM instable et dangereux en cas de décrochage (départ accentué en vrille avec difficultés d'en sortir).

A noter aussi, que vous devez avoir une vitesse d'équilibre <u>manche lâché</u>. A cette vitesse de l'ordre de 100 à 120 km/h (fonction du chargement et donc du centrage), trim au neutre, volets rentrés, une augmentation de la puissance doit faire monter l'appareil, une diminution le faire descendre. Ce point à vérifier reste très important car il permet de ramener l'appareil en cas de rupture de profondeur (soit en agissant sur les gaz, soit sur le trim ou les 2)

Si l'ensemble des vérifications en vol de ce paragraphe ne correspondaient pas aux recommandations précédentes,

Si vous avez le moindre doute de compréhension ou lors des tests, ARRETEZ LES VOLS et contactez votre vendeur.

#### **B.5** - Manœuvres autorisées :

Toutes les manœuvres qui restent compatibles avec le domaine de vol et par conséquent effectuées à l'intérieur des limites mentionnées au paragraphe précédent. A noter que par mesure de sécurité, vous n'avez aucun intérêt à vous approcher de ces limites.

La procédure reste relativement simple :

- limiter les facteurs de charge : pas de ressources brutales, pas de virages serrés (surtout en tour de piste), pas de manœuvres cumulatives comme par exemple le passage au-dessus de la maison des amis avec une ressource brutale (+ 3 g par exemple) associée à un virage serré (+ 2 g à 60° d'inclinaison), le total 5 g dépassant le facteur de charge limite de 4 g.
- s'éloigner du décrochage qui peut provenir soit d'une trop faible vitesse, soit d'une turbulence brutale (dépassement de l'incidence de décrochage), soit d'un facteur de charge élevé. Il conviendra par conséquent de rester dans toutes les phases de vol et d'approche dans des vitesses supérieures à la vitesse de décrochage de l'ordre de :
  - -+ 30 % en air calme (environ 85 km/h)
  - + 60 % en air agité (environ 100 km/h)
- respecter la symétrie du vol : une trop basse vitesse associée à une bille à l'extérieur du virage peut vous conduire à un départ en vrille. Les glissades sont autorisées à condition de les faire entre 90 km/h et 110 km/h. Une glissade à trop faible vitesse risque également de conduire à un départ en vrille au moment où vous voudrez remettre l'appareil à l'horizontale. A trop forte vitesse, elle peut entraîner la rupture d'un volet et donc une portance dissymétrique.

#### B.6 - Groupe motopropulseur ROTAX ou JABIRU: CF DOC MOTEUR

La documentation d'utilisation et d'entretien est comprise avec la fourniture du moteur.

Se référer exclusivement à la documentation moteur pour toute question concernant le moteur Chaque moteur est caractérisé par :

- sa puissance maximale
- sa masse totale équipements compris (échappements, démarreur, radiateurs, liquides, ...)

- sa vitesse maximale de rotation au décollage
- sa consommation en fonction de la puissance délivrée
- ses limites d'utilisation en tour/mn, températures huile, température cylindres / culasses, pressions etc...
- les différents types de réducteurs utilisables et les moments d'inertie des hélices associées.

#### L'hélice est caractérisée par :

- par son pas : souvent réglable au sol pour ne pas dépasser la vitesse maximale de rotation du moteur ou pour privilégier une phase d'utilisation. Un petit pas vous donnera le maximum de performances au décollage, un pas un peu plus important facilitera les performances en croisière.
- le nombre de pales : il reste intéressant de prendre des tripales et des quadripales uniquement si vous souhaitez réduire le bruit de votre machine. En effet, en réduisant la vitesse de rotation de l'hélice, son rendement augmente mais en réduisant le diamètre de l'hélice, elle fera moins de bruit mais son rendement en souffrira. Le nombre de pales peut également se montrer favorable dans certaines phases du vol mais pas dans les autres.
- son diamètre : le plus grand possible mais à condition de laisser une garde au sol suffisante.
- son moment d'inertie : exprimé en kg.cm<sup>2</sup>. A vérifier que cette valeur reste inférieure à celle tolérée par le moteur et son réducteur.

#### Le réducteur est caractérisé par :

- son rapport de réduction pour les rotax 912 : 1/2.27 OU 1/2.43 .
- le moment d'inertie maximum supporté.

Il doit rester en bon état de fonctionnement sous peine de provoquer des difficultés au démarrage, des risques de ruptures en vol ou des pertes de puissance.

### **B.7 - Puissance maximale déclarée :**

Cette liste reste indicative, elle peut évoluer dans le temps (consultez votre revendeur)

Rotax 912: 80 CV rpm max 5800 T/mn

Rotax 912S: 80 CV continu rpm max 5200 T/mn attention à ne pas dépasser cette valeur de T/mn

Jabiru 2200 : 80 CV rpm max 3200 T/mn Rotax 582: 65 CV rpm max 6800 T/mn

En aucun cas, vous ne devez dépasser une puissance installée de 60 kW (81,5 CV) pour respecter l'arrêté ULM du 23 septembre 1998 .

Il est fortement déconseillé de porter la masse maximale à 472,5 kg avec un moteur dont la puissance est inférieure à 65 CV, vous auriez des performances trop dégradées par fortes températures ou altitude élevée. Pour les modèles SW le puissances inférieures à 80 hp sont déconseillées.

#### B8 - Régime maximal:

Il dépend du moteur. La notice moteur fixe la valeur maximale qui correspond en général à la puissance maximale. Attention, En réglant le pas de l'hélice au sol, on relève une valeur supérieure en vol d'environ 300 tr/mn (l'incidence des pales devient plus petite avec la vitesse d'avancement).

#### B.9 - HELICE et Vitesse de rotation maximale de l'hélice :

Produit de la vitesse de rotation maximale du moteur avec le rapport du réducteur.

(exemple 5800 tr/mn x 1/2,27 = 2555 tr/mn)

Hélice marque DUC ref: SWIRL tripale droite pour 912 ET 912 ULS

Ou WARP DRIVE bipale ref 68R2 ou tripale ref R68R3

Ou kiev prop tripale ref 273 pour 912 OU 283 pour 912 uls

## B.10 - Type de réducteur et rapport de réduction ROTAX :

Les réducteurs courants varient de 1/2,58 de 1/3.47

#### **B. 11 - Nuisances sonores :**

La procédure de mesure de bruit est définie dans l'arrêté du 17 juin 1986. Cette procédure se traduit dans l'instruction du 21 septembre 1998 (cette instruction précise les conditions d'application de l'arrêté du 21 septembre 1998) par l'indication de la hauteur de survol Lh permettant de respecter 65 dB(A).

La mesure peut se faire de la façon suivante, de préférence sans vent :

- utiliser un sonomètre gradué en dB(A) (tenant compte de la sensibilité de l'oreille humaine)
- tenir le sonomètre à bout de bras, microphone dirigé à la verticale

- mesurer le bruit de l'ULM passant à une hauteur H, pleine puissance (par exemple à 150 m)
- faire au moins 2 passages dans les deux sens pour vérifier la fidélité de la mesure et faire la moyenne. La valeur moyenne mesurée est appelée Lr

S'il y a du vent, on déduit le bruit fait par le vent par la formule suivante :

 $Lv = 20 \log (14/(14-V))$ 

V exprimé en m/s et Lv en décibels

La valeur faite réellement par votre ULM est donc égale à Lm = Lr - Lv.

La valeur donnant le bruit de l'ULM volant à la hauteur h est : Lh = Lm - 22 log h/H

Exemple: L'ULM passant à 150 m, vous avez relevé une valeur moyenne de 71 dB(A)

Le vent soufflant à 15 km/h (4,17 m/s) donne Lv =  $20 \log (14/(14 - \text{V})) = 20 \log (14/(14 - 4,17)) = 3,07$ 

Lm = Lr - Lv = 71 - 3,07 = 67,93

 $Lh = Lm - 22 \log h/H = 65 =>$ 

 $\log h/H = (67.93 - 65)/22 = 0.133 \implies h/H = 1.36 \implies h = 1.36 \times 150 = 204 \text{ m}$ 

Une calculatrice scientifique, en appuyant sur 10x, donne h/H correspondant à un log de 0,133

A titre indicatif, le constructeur a mesuré ces valeurs qui sont les suivantes :Rotax 912 / 912s : 70m

## B.12 - Tableau indicatif sur les performances minimales avec sécurité en conditions de pression et temp std (ne jamais dépasser les masses max. en vol)

Ces valeurs sont données avec une certaine marge de sécurité car l'ULM se pratique parfois dans des conditions non conventionnelles (piste très enherhées, sableuse, pente légère etc...)

Analysez bien vos paramètres avant tout décollage ou atterrissage !!!!!!!!

| motorisation                 |       | Rotax 582 de    | Rotax 618       | Rotax 912 | Rotax 912 S | Jabiru   |
|------------------------------|-------|-----------------|-----------------|-----------|-------------|----------|
|                              |       | référence       | standard        | standard  | Standard    | 80cv     |
| masse max sans               |       | 450 kg          | 450 kg          | 450 kg    | 450 kg      | 450 kg   |
| extension masse max avec     |       | 472 kg          | 472 kg          | 472 kg    | 472 kg      | 472 kg   |
| extension                    |       |                 |                 |           |             |          |
| masse à vide mini            |       | 245 kg          | 249 kg          | 262 kg    | 262 kg      | 255 kg   |
| masse vide max               | 450kg | 284 kg          | 284 kg          | 284 kg    | 284 kg      | 284 kg   |
| masse vide max (*)           | 472kg | 305 kg          | 306 kg          | 306 kg    | 306 kg      | 306 kg   |
| taux de réduction            |       | 1/2,58 à 1/3,47 | 1/2,58 à 1/3,47 | 1/2,27    | 1/2,43      | direct   |
| Puissance                    |       | 65 CV           | 75 CV           | 80 CV     | 100 CV      | 80 CV    |
| vitesse décrochage-vso, avec | 450kg | 62 km/h 64      | 62 km/h         | 62 km/h   | 62 km/h     | 62 km/h  |
| volets 25 degrés             | 472kg | km/h            | 64 km/h         | 64 km/h   | 64 km/h     | 64 km/h  |
| distance                     |       | 180 m           | 170 m           | 170m      | 160m        | 180m     |
| décollage conditions         |       |                 |                 |           |             |          |
| standart à 450 kg            |       |                 |                 |           |             |          |
| décollage / passage 15m(**)  |       | 330m            | 320 m           | 320m      | 300m        | 330m     |
| Vz montée                    |       | 3 m/s           | 4 m/s           | 4m/s      | 5 m/s       | 3m/s     |
| Vx montée                    |       | 90 km/h         | 90 km/h         | 90 km/h   | 90 km/h     | 90 km/h  |
| Vfe 25°                      |       | 120 km/h        | 120 km/h        | 120 km/h  | 120 km/h    | 120 km/h |
| atterris. / passage 15m(**)  |       | 400 m           | 400 m           | 400m      | 400m        | 400m     |
| Finesse                      |       | 10              | 10              | 10        | 10          | 10       |
| Vno (air turbulent)          |       | 125km/h         | 125km/h         | 125km/h   | 125km/h     | 125km/h  |
| Vne                          |       | 165km/h         | 165km/h         | 165km/h   | 165km/h     | 165km/h  |
| Consommation a' 80%          |       | 16l/h           | 16l/h           | 14l/h     | 16l/h       | 14l/h    |
| Facteur de charge limite     |       | +4g/-2g         | +4g/-2g         | +4g/-2g   | +4g/-2g     | +4g/-2g  |
| Limite de vent traversier    |       | 15kt            | 15kt            | 15kt      | 15kt        | 15kt     |

- (\*) il est vivement déconseillé l'extension de masse (parachute, Hydro etc...)à 472kg avec une faible motorisation
- (\*\*) Limite de vent traversier 30km/h (+/- 15kt)
- (\*\*\*) Voir manuel moteur pour caracteristiques précises.

Attention : ces performances se dégradent fortement : plus les températures et l'altitude sont élevées (été et vol montagne !!), cas de piste en herbe ou en pente,

Pneus dégonflés, mauvais centrage, pas d'hélice non adapté etc...

#### **Facteurs correctifs:**

| Conditions                  | Augmentation de la distance - | Facteur correctif | <u>Observations</u>  |
|-----------------------------|-------------------------------|-------------------|----------------------|
|                             | >passage 15m                  | correcti          |                      |
| Augmentation de la masse de | 20%                           | + 1,2             |                      |
| l'attelage de 10%           |                               |                   |                      |
| Augmentation de 1000FT      | 10%                           | + 1,1             | Par rapport au       |
| d'altitude                  |                               |                   | niveau de la mer     |
| Augmentation de 10° de      | 10%                           | + 1,1             | Par rapport au       |
| température                 |                               |                   | standard en fonction |
|                             |                               |                   | de l'altitude        |
| Piste en herbe              | 15%                           | + 1,15            | Effet accru sur la   |
|                             |                               |                   | distance de          |
|                             |                               |                   | roulement            |
| Composante vent de face     | 10% par tranche               | 0,9 par tranche   | et passage des 15m   |
|                             | de 10kt de vent               | de 10kt de vent   |                      |

RAPPEL : En aucun cas vous ne devez dépassez + 4 g en positif et - 2 g en négatif (g représentant le facteur de charge). Pour rester dans un domaine de vol sûr, vous devez :

- ne pas effectuer des virages stabilisés à plus de 60° d'inclinaison
- ne pratiquer aucune figure de voltige qui reste rigoureusement interdite, vrilles interdites
- ne pas effectuer de plein débattement brutal des commandes au-dessus de 120 km/h. A noter qu'en dessous de cette vitesse, vous risquez de décrocher brutalement la machine
- ne pas dépasser 120 km/h dans les conditions turbulentes
- ne pas dépasser la Vne de 195 km/h.
- ne pas voler au-dessus de 12000 pieds soit 3700 mètres, sans oxygène (réglementation)
- rester en conditions de vol VFR et ne pas voler sous : pluie battante, grêle, neige, vent violent, turbulences fortes, vous devez vous informer de la météo avant tout vol.

## C - PROCEDURES D'URGENCE

#### **C.1 - Panne moteur:**

La pratique de la panne moteur mérite un entraînement régulier avec un instructeur qualifié. Il faut l'envisager <u>avant</u> le décollage pour faire face à cette éventualité à partir des paramètres suivants : force du vent, champs libres, éblouissement par le soleil, expériences précédentes. La simulation d'une panne présente en elle-même un risque dont il faut être conscient : respect de la vitesse et de la symétrie, risque de givrage moteur à la réduction,

## C.1.1 - au décollage :

- de 0 à 10 m : tout droit, rendre la main et procéder à l'arrondi
- de 10 à 50 m : rendre la main pour garder 100 km/h, virage autorisé de 45 ° de l'axe
- de 50 à 100 m : rendre la main pour garder 100 km/h, virage autorisé à 90 ° de l'axe----
- à partir de 100 m : possibilité de faire un 180° de l'axe pour se poser dans un champ.

A noter que ces valeurs nécessitent <u>un respect absolu de la vitesse et de la symétrie de l'appareil</u> et donc une bonne expérience de ces manœuvres sur ce type de machine.

<u>Attention</u>: le retour sur piste constitue une opération des plus hasardeuses, qui présente d'énormes risques et qui de toute façon ne doit pas s'envisager au-dessous de 150 m. Elle dépend de votre entraînement au pilotage et des conditions de vent (un posé vent dans le dos sur la piste peut multiplier la distance d'atterrissage dans des proportions énormes qui dépasseront parfois la longueur disponible de la piste).

#### C.1.2 - en vol :

A 300 mètres du sol et au-dessus, la conduite d'une panne moteur ne présente pas beaucoup de risques si l'on reste dans un cône de sécurité (voir manuel pilote ULM).

Il faut garder en mémoire la procédure suivante :

- savoir en permanence d'où vient le vent et analyser l'axe préférentiel de posé (vent, direction du soleil, relief, turbulence, ....)
- au moment de la panne, affichez la vitesse de finesse maximale (proche de 90 km/h, mais variable en fonction de la masse de votre ULM),
- mettre tout de suite les volets en configuration d'atterrissage. Les puristes vous diront que vous allez perdre en finesse mais au moins vous n'aurez plus à vous en occuper et vous prendrez contact avec le sol à vitesse minimale.
- recherchez un terrain, de préférence en partant vent dans le dos pour améliorer votre finesse sol. Vous devez normalement connaître vos repères pour visualiser l'angle 2 alpha qui définit la zone que vous pouvez atteindre.
- visez de préférence le premier quart du champ et effectuer dans les 50 derniers mètres une glissade qui ajustera votre point d'aboutissement. Par sécurité, il vaut mieux se situer en finale, un peu trop long que trop court.

#### C.2 - Remise en route du moteur en vol :

La remise en route ne doit s'effectuer qu'après vous être assuré que vous pouvez atteindre un terrain de secours. Le premier réflexe consiste à actionner la poire, la pompe de gavage ou l'injection pour alimenter votre moteur avant la remise en route, la panne pouvant provenir de la pompe mécanique ou de l'obstruction du circuit carburant. Si le moteur est resté quelques minutes arrêté, il sera suffisamment refroidi pour imposer peut être l'enclenchement du starter (suivant moteur).

Un serrage moteur reste très facile à détecter : votre hélice s'arrêtera et se remettra à tourner au bout de quelques secondes. Dans ce cas le moteur repartira mais il conviendra de rejoindre au plus vite un terrain ULM ou d'aviation, moteur réduit pour tenir juste le palier. Il faudra ensuite impérativement procéder à un démontage des cylindres pour examiner leur état de surface.

#### C.3 - Fumée et feu:

La fumée peut très bien envahir la cabine suite par exemple à une fuite d'huile sur le pot d'échappement (moteur 4 temps). Si vous ne voyez plus la piste, mettez-vous en glissage côté pilote pour voir sur le côté de la cabine et procédez à un atterrissage d'urgence.

En cas de feu, fermer le robinet d essence ou coupez impérativement le moteur pour arrêter l'alimentation en carburant si absence de robinet. Se poser immédiatement.

#### C.4 - Vol plané:

Vous avez le choix entre deux solutions :

- prendre la vitesse de finesse maximale, vous irez le plus loin possible,
- prendre la vitesse verticale minimale (Vz mini), vous resterez le plus longtemps en l'air.

Ces vitesses se déduisent de la polaire des vitesses air qui se trouvent dans la fiche de réception.

#### C.5 - Atterrissage d'urgence :

En cas d'atterrissage précipité quel que soit l'état du sol ou de l'environnement, prendre les mesures pour sauver l'équipage et non pas la machine : ceinture bouclée, mains sur le tableau de bord pour le passager.

#### **C.6** - Autres urgences:

Blocage ou perte d'une commande de vol:

- perte de profondeur : normalement en jouant sur la puissance du moteur (plus de puissance le fait cabrer), sur les volets ou sur le compensateur s'il existe, vous permettra de ramener l'appareil. Choisir de préférence un grand terrain d'aviation ou un champ d'au moins 800 m pour effectuer l'atterrissage.
- perte des ailerons : vous pouvez ramener l'appareil au palonnier, le roulis induit compensant la perte d'action sur les ailerons. Vous pouvez aussi saisir un des câbles en haut de la cabine pour voir si une action reste possible.
- perte de la direction : le retour de l'appareil reste possible à condition de limiter les manœuvres aux ailerons (risque de départ en vrille aux grands angles).
- Dans tous les cas maintenir un vol le plus horizontal possible.

#### Passager paniqué:

La présence d'un passager paniqué peut présenter de très gros risques pour la sécurité : blocage sur les commandes de vol, gestes et cris désordonnés, vomissements. Dans tous les cas, il faut lui parler, effectuer des manœuvres très douces et revenir au plus vite au terrain. Un conseil, n'insistez jamais pour prendre un passager qui montre la moindre réticence, vous limiterez ainsi le risque de panique à bord.

Rupture d'une pale d'hélice :

Couper immédiatement les contacts, les vibrations provoquées par le balourd pourraient conduire à la rupture des attaches du moteur.

Pneu crevé:

Se poser en légère glissade, l'aile haute côté du pneu à plat.

## **D-PROCEDURES NORMALES**

#### D.1 - Visite prévol (minimale indicative, fonction des équipements):

Prenez l'habitude de faire cette visite dans un ordre bien précis :

- 1 Examen de l'habitacle : alimentation électrique coupée, contacts coupés, starter mis, mise en pression de la poire carburant(option), examen des commandes de vol, état du manche ou double manche (soudures inférieures) et de toutes les liaisons des cables aux gouvernes (profondeur, direction, ailerons) dans la cabine et dans les ailes.
- 2 Examen de la partie avant : fermeture du capot. Se mettre devant l'appareil et évaluer sa symétrie. Examen de l'hélice et de criques éventuelles. Rotation de l'hélice pour vérifier les compressions et l'absence de claquements dans le réducteur. Attention : rotation très lente de l'hélice à effectuer pour éviter un départ intempestif (toujours possible si un des interrupteurs de contact ne met pas l'allumage à la masse). Examen par l'ouverture de l'entrée d'air de la tenue du pot d'échappement, des ressorts et des carburateurs dont les brides. Examen de la tenue des capuchons de bougies. Examen attentif de toutes les durites eau et huile, des colliers , d l absence de frottement de ces durites. L'ouverture du capot peut se faire à la première visite prévol de la journée ou lors d'une visite périodique en cas d'utilisation intensive de la machine. Examen du train avant.
- 3 Examen du train principal droit : absence de criques, de jeu excessif, fixation du carénage, absence de crique sur la contre-fiche avant.
- 4 Examen de l'aile droite, de ses haubans, des contrefiches, des parties mobiles : présence et état de toute la boulonnerie en bas et en haut des haubans, vérif des plaques 82.2 d attache des haubans a l'aile, vé absence de jeu aux liaisons, état de la toile, présence des anneaux fendus, du blocage des ridoirs. Vérification en bout d'aile de sa rigidité et de l'absence de jeu dans les attaches (remuer l'extrémité de l'aile en la tenant par le bord d'attaque et le bord de fuite et vérifier l'abscence de jeu suspect).

5 - Examen de la partie arrière et des empennages : Fixations, état des cables et ridoirs, absence de déchirure dans la toile.

Examen des réservoirs (Etat, quantité carburant, mise à l'air libre, bouchons fermés, purge éventuelle des réservoirs, pas d'impuretés ou d'eau, robinet ouvert) et des durites essence.

Vérification de la boulonnerie de fixation, des vis à oeils, des anneaux fendus, des câbles et ridoirs sécurisés, de tout jeu excessif.

Vérification de la boulonnerie de fixation des empennages et des vis à œil d'articulation des parties mobiles Vérification des cables de profondeur et de direction, des ridoirs, avec leur sécurité dans le fuselage.

6 - Examen partie gauche : idem partie droite. Vérifier également la prise de pression : orientation, non obstruée.

IMPORTANT: verifier sur le site internet du constructeur ou demandez régulièrement à votre revendeur dernières bulletins de service et dernières version des manuels d'entretien concernant votre appareil, pour bien vérifier les points mentionnés dans ce notes.

#### D.2 - Mise en route :

- Si vous avez un passager et que le démarrage se fait à la main, montrez-lui comment on coupe le moteur. C'est une mesure élémentaire de sécurité qu'il convient d'appliquer pour éviter un démarrage brutal qui proviendrait du carburateur resté à pleine puissance.
- Gaz coupés, starter mis, contacts, personne devant ou proche de la machine, mise en route.

A noter que tous les moteurs ne démarrent pas de la même façon. Moteur froid, on peut effectuer un brassage de l'hélice au préalable à la main ou faire tourner le moteur quelques secondes au démarreur sans contact pour amener l'essence dans les cylindres.

Un moteur qui démarre mal, indique toujours un problème : bougies, allumage, gicleurs encrassés ou carburateurs mal réglés. Procédez à la remise en état.

Après la mise en route, vous devez faire les actions vitales. Il faut les afficher sur le bord d'attaque de votre ULM de façon à les appliquer systématiquement et sans oublis. Utilisez "ACHEVER" que l'on retrouve dans le manuel pilote ULM.

Ces actions vitales sont un modèle qu'il conviendra de compléter ou de simplifier en fonction de l'équipement de votre ULM.

A Accrochage: ceintures - casques - vêtements (rien dans les poches) - portes

C Commandes : libres, bon sens - frein - accélérateur - starter

**Hélice**: absence vibrations

Essence : robinet - quantité – bouchons (odeur !!!)

V Vérifications : tous instruments - sélection allumage - essai coupure -

parachute - vent - volets (1 cran) paramètres moteurs ok

(pressions/températures/etc..)

**Extérieur**: parking - piste libre - finale - vent arrière

**Radio** - point fixe - ralenti (moteur ne cale pas) - températures.

## D.3 - Décollage :

Un décollage doit toujours s'effectuer suivant la procédure suivante :

- analyse avant le roulage des possibilités d'atterrissage en cas de panne moteur au décollage
- actions vitales effectuées
- un cran de volet
- choix de la pente de montée (voir fiche de réception) une vitesse de 100 km/h est un bon compromis sinon :
  - à pente maximale, soit environ 90 km/h
  - à Vz maximale si vous voulez prendre de l'altitude le plus vite possible soit environ 85 km/h
  - optimale proche de la finesse maximale, soit environ 90 km/h

Majorez ces vitesses de 10 km/h en atmosphère turbulente.

- alignement toujours en bout de piste pour disposer de la distance maximale
- mise des gaz progressive, rapide mais non brutale
- à 40 km/h, soulager le train avant (ou mettre l'appareil à l'horizontale en cas de train classique)
- au décollage rendre tout de suite la main pour effectuer un palier de prise de vitesse. Ce palier doit s'effectuer le plus près possible du sol pour diminuer la traînée induite. Quand la vitesse de choix de montée est atteinte, l'appliquer (très rapidement en ulm)

- première réduction de gaz vers 100 mètres
- à 300 mètres, rentrer les volets, afficher la puissance de croisière ou de montée lente. Utilisez les actions vitales avion : Eh (essence) Voilà (volets) Pourquoi (pas) Ca (compensateur) Gaz (réduction)

#### D.4 - Croisière:

En croisière vous avez le choix entre 3 vitesses :

- la croisière rapide qui correspond à environ 80% de la puissance disponible du moteur
- la croisière à la vitesse de finesse maximale. C'est à cette vitesse que vous irez le plus loin possible avez le carburant dont vous disposez
- la croisière économique qui correspond à votre point de Vz mini sur la polaire des vitesses. A ce point vous resterez le plus longtemps possible en l'air avec le carburant dont vous disposez.

N'oubliez pas que vent dans le nez, ces vitesses sont à majorer d'environ de la moitié du vent.(voir votre manuel pilote ULM sur la polaire sol).

Par fort vent de face, il faut majorer les vitesses (si par un vent de 80 km/h, vous volez à 80 km/h, votre vitesse sol devient nulle et votre consommation infinie pour le trajet prévu!).

#### D.5 - Atterrissage:

- Vent arrière : actions vitales, volets (un cran ) , essence (il doit réglementairement vous rester au moins 1/4 d'heure d'essence). Quand vous arrivez à la hauteur de l'entrée de piste, vous devez pouvoir normalement rejoindre la piste sans problème à partir de cet instant si le moteur tombe en panne. On appelle ce repère l'angle 2 alpha. Vous devez le matérialiser sur le hauban (proche de la contre-fiche horizontale).
- Etape de base : en procédure normale, vous réduisez le moteur d'environ 1000 tr/mn pour vous mettre en descente. Affichez 100 km/h par précaution.
- Finale : adoptez le plan de descente en fonction du vent et de votre choix d'approche. Vous devez visualiser le point d'aboutissement sur la piste à partir d'un repère sur la pare-brise. Une fois ce point choisi, et par conséquent le plan retenu :
  - la profondeur doit vous servir uniquement à rester sur le plan
  - les gaz vous permettre d'ajuster la vitesse
  - la direction vous faire garder l'axe de la piste.

Un bon plan de descente doit vous permettre d'arriver à l'entrée de la piste à environ 2 m au-dessus du sol. En réduisant alors totalement les gaz et en faisant un palier de décélération à 50 cm au-dessus du sol, vous devriez vous poser sans problème. Si la piste est courte, il conviendra de réduire la vitesse d'approche dans la dernière centaine de mètres mais sans jamais passer au-dessous de 85 km/h.

Note: par vent supérieur à 40 km/h, mettre seulement un cran de volet, garder 100 km/h jusqu'à l'arrondi.

En cas de rebond (contact au sol avec trop de vitesse), rendre la main pour remise un palier et reprendre ensuite l'arrondi. Si le rebond est trop important, remettre de préférence les gaz pour faire un nouveau tour de piste.

#### D.6 - Après atterrissage et arrêt du moteur :

- couper tous les contacts et servitudes
- mettre l'appareil face au vent
- bloquer les commandes si rafales de vent violentes
- attacher l'appareil au sol ou mettre des cales.

## E - PERFORMANCES (à pleine charge)

#### E.1 - Préambule :

Les valeurs mentionnées ci-après sont des valeurs moyennes relevées sur la version de base (moteur de 65 CV) et dans les conditions standard (1013 hPa et 15 °C). Vous pouvez avoir des performances différentes, surtout en raison de la masse de votre appareil au moment de l'essai, des conditions de pression et température extérieures, des erreurs d'installation anémométrique, des réglages de l'hélice, des performances de votre moteur.

Les valeurs réelles sont à mentionner dans la fiche annexe de réception.

#### E.2 - Décollage :

- Vitesse recommandée : 65 km/h, suivie d'un palier près du sol jusqu'à 90 km/h et montée 100 km/h
- Distance de roulement : 180 m

- Distance de décollage avec passage des 15 m : 350 m
- Limite de vent traversier démontrée : 30 km/h (environ 15 kt).

#### E.3 - Atterrissage:

- Vitesse recommandée : 100 km/h dans la phase d'approche
- Distance d'atterrissage avec passage des 15 m : 400 m
- Limite de vent traversier démontrée : 15 kt.

#### E.4 - Finesse maximale et vitesses associées :

- finesse maximale : 9 qui correspond :
  - seul à bord : 80 km/h
  - à la masse maximale : 90 km/h

### F - MASSES ET CENTRAGES, EQUIPEMENTS

#### **Pour information:**

**F.1 - Masse à vide appareil de référence :** 262 KGS 912 UL (1 hre essence)

**F.2 - Centrage à vide de référence :** 23 % à vide pour l'appareil de référence.

#### F.3 - Configuration de l'ULM choisie pour la détermination de la masse à vide de référence :

Version moteur 912 UL - Réducteur ½.27 - Démarreur électrique, accumulateur 12 V -17 Ah - Radio - Interphone avec casques - Instruments : vitesse, vario, bille, température eau, compte-tours, horomètre - Ceinture 4 points - Sièges toile - 3 roues de 400 x 6 - freins à disque hydrauliques sur le train principal - 2 réservoirs 30 litres - Hélice tripale KIEVPROP.

#### F.4 - Liste des équipements :

Voir paragraphe H

#### **F.5 - Masse et centrage** (sur l'appareil de référence rotax 912):

Suivant la motorisation et l'équipement, on relève des fourchettes allant de 17% à vide à 35% en charge.

#### F.6 - Méthode de pesée :

Pesée sur sol horizontal avec 5 pèses-personnes (2 par roue principale).

Le calcul du centrage s'effectue conformément au paragraphe précédent B4 et à la fiche de réception.

#### **G-MONTAGES ET REGLAGES**

#### G.1 - Consignes de montage et de démontage :

#### **G.1.1 - Montage :**

Un manuel de montage est fourni avec le kit. Si l'appareil vous est livré monté en état de vol, vous pouvez replier les ailes pour le transporter sur une remorque. Le remontage s'effectue alors en sens inverse du démontage.

#### G.1.2 - Repliage des ailes (avec le kit optionnel) se référer au manuel correspondant.

#### G.1.3 - Manœuvre de l'appareil au sol :

Ne jamais s'appuyer ou agir sur les parties mobiles y compris le plan fixe vertical.

Manœuvrer:

- devant à partir de l'axe d'hélice

- sur les cotés à partir de la partie supérieure des haubans près de l'aile
- sur l'arrière à partir de la partie située en avant du plan fixe horizontal près du fuselage.

Si vous devez soulever l'appareil par une aile, le saisir à partir de chaque liaison hauban-aile mais jamais par le hauban, vous risqueriez de les déformer.

#### G.2 - Liste des réglages accessibles à l'utilisateur et conséquences sur les caractéristiques de vol :

Les réglages ci-dessous doivent etre effectués au montage du kit avant le premier vol, mais aussi régulièrement et dans tous les cas quand on observe que l'appareil n'est pas réglé correctement (effort anormal sur une des commande en vol!)

IMPORTANT : Vérifier le bon sens des ailerons lors du montage des cables ou après toute intervention ou après démontage des ailes !!!!!

#### G.2.1 - Réglage des volets :

Les régler légèrement porteur (bord de fuite 2 cm plus bas que l'intrados de l'aile).

L'action de baisser les volets en vol rend normalement l'appareil piqueur (parfois cabreur en fonction du centrage lié au type de motorisation et au chargement de la machine).

#### G.2.2 - Réglage des ailerons :

Régler les ailerons dans l'alignement des volets,

vérifier que l'intrados de ceux ci, soit aligné sur l'intrados de l'aile, (voir très légèrement porteur).

Tension des câbles: 1 kg au niveau du ridoir avant, sous la verrière, flèche +/-5 cm

Plus les câbles sont tendus, plus la commande est dure et risque de déformer les éléments dans la cinématique de commande des ailerons.

#### **IMPORTANT:**

Vérifier le bon sens des ailerons lors du montage des câbles ou après toute intervention ou après démontage des ailes !!!!!

#### G.2.3 - Réglage de la gouverne de direction :

Calage de la gouverne de direction au neutre, les palonniers doivent être alignés. Vérifier le bon sens de la roulette avant qui doit aussi se positionner au neutre. Le réglage de la tension doit se faire roue avant levée car les palonniers avancent légèrement quand la roue avant se trouve en vol (les câbles vont se tendre en vol).

Un tab fixe de direction de la dimension du trim de profondeur est fortement recommandé, il permet de compenser le couple moteur (éviter l'effort sur palonnier) à la vitesse de croisière.

#### G.2.4 - Réglage des palonniers :

Possibilité de régler de +/- 5 cm la position des palonniers en réglant par les trous sur patte inox de câbles commande de direction.

<u>NB</u>: vérifier toujours la cinématique des cables, la sécurisation des ridoirs et manilles et le bon sens des commandes après toute intervention sur les commandes !!!!.

<u>IMPORTANT</u>: un appareil doit voler parfaitement à deux personnes en vol en croisière sans avoir a agir sur les commandes. Si votre appareil tire en vol a droite ou a gauche ou a tendance à piquer ou cabrer en dehors des limites du trim, arrèter les vols reprendre la procédure de réglages ou contacter de suite un professionnel pour régler correctement votre appareil

# G.2.5- réglage du vrillage d'aile : Si votre appareil « tire » à droite ou à gauche après réglages des gouvernes

Nous vous conseillons fortement de vous adresser à un professionnel pour le faire régler

**Important : un appareil doit voler a deux personnes en vol croisière sans avoir a agir sur les commandes** Procédure si votre appareil a tendance a « tirer sur un coté » après avoir réglé correctement les gouvernes G2.1 a G2.4 :

Bien vérifier à nouveau et régler au sol le neutre des commandes (G2.1 à G2.4),

- mettre les palonniers au neutre et vérifier que la roue avant est bien dans l axe appareil, et que la direction est parfaitement alignée sur la dérive
- volets voir réglage volets précédement, mais doivent etre parfaitement identiques les 2, légèrement porteurs.
- Idem pour ailerons : manche au neutre, ailerons au neutre dans prolongement des volets

Important : ne pas oublier d assurer les ridoirs au fil frein, et vérif de l ensemble des commandes(sens correct)

En vol, par temps parfaitement calme impérativement, à vitesse +/- 130 km/h, un lest sur le siège passager pour équilibrer les masses vol horizontal stabilisé:

- mettre et maintenir le palonnier bien au neutre puis le manche au neutre (roulis) ensuite vérifier que fait l appareil ?
- Exemple, s il part a gauche, 1 aile droite est donc plus porteuse ( ou la gauche est moins porteuse)
- Dans cet exemple il suffit de corriger le vrillage de l aile droite, en corrigeant l'angle du bord de fuite de l'aile droite vers vers le haut, en utilisant une chappe acier inox no 81 + 5mn (fournie dans le kit, mem opération que sur un piper J3 avec une rotule de réglage)), la chappe qui doit etre changée doit impérativement etre celle dans le haut du hauban arrière uniquement et pas une autre!

NB : le contrôle et réglage du vrillage des ailes avec des cotes au sol est tres difficile a réaliser et déconseillé (sol pas uniforme, train ar déformé etc..)!

#### **H - AUTRES UTILISATIONS**

#### H.1 - Répercussions du montage éventuel de tout équipement spécial :

#### H.1.1 - Bagages:

A déterminer précisément avec la fiche de pesée et centrage correspondant.

Le poids maximum autorisé est fonction de l'option choisie (parachute ou flotteurs). L'emplacement des bagages et la masse maximale de ceux-ci doivent être vérifiés à partir de la fiche de réception.

#### H.1.2 - MONTAGE d'un Parachute :

Le parachute pyrotechnique utilisé ne doit pas avoir un poids supérieur a 15 kg, refaire impérativement la fiche de centrage après montage du parachute.

- il se fixera à l'arrière d'un des sièges en partie haute sous les trappes avec velcro prévues à cet effet
- le parachute lui-même se fixera au tube no 7 (positif) et au tube 9 en bas (négatif), et au tube 6 en latéral
- Le ou les points d'accrochages des sangles ou câbles d ouverture du parachute sur la cellule sont dimensionnés pour tenir les contraintes dues au choc à l'ouverture. Ils sont choisis afin que l'appareil touche le sol en assurant la meilleure protection à l'équipage.
- Points d'ancrage :les câbles ou sangles d'ouverture se fixeront impérativement autour (faire une boucle) du tube acier principal no 9 .
- Cas d'une sangle, une boucle autour du tube 9 d'un seul coté près entre départ tubes 10 et 6, passage de la sangle devant le tube 7 en haut.
- Cas de deux sangles : idem mais une sangle autour du tube 9 de chaque coté
- Cas de trois sangles : idem cas de 2 sangles plus troisième sangle autour des U de fixation des bords d attaques en haut de cabine, sangle sous Lexan et PASSAGE sur tube 7
- Découper au fer chaud la toile de fuselage au raz des Velcros de la trappe, remettre la trappe en place avec velcros
- La trajectoire de l'extracteur ne doit intercepter aucun élément de la structure susceptible de perturber le cycle de déploiement du parachute.
- l'extracteur est d'un type pyrotechnique à flamme chaude, des protections thermiques suffisantes doivent etre installées afin d'éviter tout risque d'incendie à la cellule. IL faut donc protéger les réservoirs, situés sous le parachute en mettant sous la fusée, bien fixé au bas, un tube en aluminium d'un diam de 60mn environ de la longueur des réservoirs et placé à coté qui canalisera la flamme.
- Les ceintures de sécurité de l'équipage et leurs attaches peuvent supporter les accélérations du choc à l'ouverture

- Le cheminement du câble de déclenchement ne doit pas interférer avec les commandes de vol et les commandes moteur. Il doit également être bien fixé en haut de cabine sur les tubes 10
- Tous les composants liés au parachute doivent avoir une protection contre la détérioration, due par exemple aux conditions météorologiques, aux vibrations, à la corrosion, ou à l'abrasion.
- Vérifier cela avec votre fournisseur de parachute
- L'installation du parachute n'introduit pas de conséquences graves sur le centrage et l'aérodynamisme de l'ULM

## 2. Conception de la commande

- La poignée de commande située en haut de cabine sur les tubes supérieurs est facilement accessible par le commandant de bord, éventuellement par le passager, et installée de manière à ne pouvoir être confondue avec aucune des commandes de vol
- Sa fixation grâce au perçage de diam mimi 5mn sur le tube de cellule est conçue pour résister aux efforts de déclenchement avec un très large facteur de sécurité.
- La mise en place d'une goupille de sécurité pour éviter un déploiement intempestif du système lors des opérations au sol est obligatoire.

#### 3. Marquages et étiquettes

- La fonction de chaque commande du parachute est clairement identifiée par des codes de couleur et des plaquettes.
- La commande de déclenchement est de couleur rouge.
- L'étiquette suivante est installée à côté de la commande de déclenchement :

## « Attention – Parachute de secours (Liste des Actions à effectuer) »

- Une plaquette « **Danger fusée d'extraction** » avertissant du danger potentiel doit être placée à l'extérieur de l'aéronef, au niveau de la fusée si elle est apparente ou au niveau de son emplacement, et de manière à ce que les personnes au sol puissent facilement la distinguer. Il est recommandé d'indiquer le sens d'extraction par une flèche.

#### 4. Manuel d'entretien fourni avec le parachute

Le manuel d'entretien doit contenir toutes les informations nécessaires à un entretien convenable du système. Des instructions doivent être fournies pour les inspections, la mise au point et l'armement/ le désarmement du mécanisme de déploiement, incluant les périodes d'entretien recommandées par le constructeur.

Toutes les précautions qui doivent être prises lors du réglage, de la mise au point, de l'armement et du désarmement, et de l'utilisation du système doivent être clairement établies.

#### 5. Manuel d'utilisation fourni avec le parachute

contacter le représentant du parc hutte pour toute info complémentaire

IMPORTANT : Refaire impérativement le calcul et la fiche des limites de centrage.

#### H.1.3 - Skis:

Surface minimale par ski : 0,20 m<sup>2</sup>

Ils doivent être fixés à l'emplacement des roues sur un axe en leur milieu permettant une rotation de +/- 30° vers le bas, ceux-ci étant calés parallèlement à l'intrados de l'aile et maintenus dans cette position par une liaison élastique. Ne pas oublier leur vérification lors de la visite prévol.

Au décollage, vérifier l'absence de pente latérale prononcée pouvant provoquer une glissade vous déviant ainsi de l'axe de décollage prévu.

A l'atterrissage attention au phénomène "jour blanc" diminuant les contrastes qui provoquent une mauvaise estimation de votre hauteur par rapport à la neige.

Tenir compte de l'influence de l'altitude et de la température sur les performances.

#### H.1.4 - Matériel photo et vidéo :

Placer ce matériel près du bord d'attaque d'une des ailes dans l'intervalle se situant entre la verrière et la fixation du hauban.

Fixer solidement ce matériel pour éviter tout risque de chute pouvant provoquer des dommages a l'appareil ou aux tiers.

Les influences sur les paramètres de vol sont insignifiantes avec du matériel léger (poids inférieur à 1,5 kg) Pour le cas de matériel lourd, nous consulter.

#### H.1.5 - Flotteurs:

Monter uniquement des flotteurs d'origine avec fixations d'origine (voir manuel FULL FLOAT). Faire obligatoirement de la double commande en école avec un instructeur habilité pour vous faire lâcher.

#### H.1.6 - Crochet pour banderole:

Ne monter que des crochets d'origine. Respecter les consignes d'utilisation.

#### H.1.7 – Epandage agricole (activité particulière avec DNC):

Une formation avec un formateur aux DNC est nécessaire!!

#### Se référer impérativement au manuel de montage et d'utilisation du fabricant du matériel d'épandage.

La cuve et éventuellment les pompes motorisées devront impérativement se situer au niveau d'un des sieges passager au plus près du centre de gravité de l appareil pour ne pas sortir de la zone de centrage.

Dans le cas de fixation de la cuve sous la cabine, avec dispositif de largage la règle est la même

Les fixations devront etre étudiées pour supporter la charge du réservoir et des équipements y compris sous charge limite 4 g et ultime 6g

Les rampes d'épandage ou dispositifs type micronair devront etre fixée impérativement

- Du depart du fuselage, au niveau du tube acier no 9
- Ensuite vers l'extérieur en triangle en partant du niveau des contrefiches de haubans
- Les contrefiches devront etre renforcées impérativement au minimum celles en référence du nynja type jar vla

Refaire impérativement le devis de masse et centrage de l appareil!

Attention aux phénomènes de corrosion due aux produits de traitement sur la cellule

Nettoyer régulièrement à l eau la cellule et vérifier les jonctions de tubes

#### H.1.8 - Largage de parachutiste (activité particulière avec DNC) :

Une formation avec un formateur aux DNC est nécessaire!!

Démonter et sortir la porte coté largage pour cette activité

Vérifier la présence du renfort latéral alu de cabine sur le coté en fibre de verre

Mettre le siege passager en position la plus arrière et verrouillez le à l'arrière à l aide de rislans efficaces

Verifier la longueur suffisante de la ceinture de sécurité

Attention à vérifier que rien ne vienne accrocher ou retenir le parachute

Rester en dessous de 130km/h

#### **IMPORTANT:**

N'oubliez pas que le parachute à bord de la machine est obligatoire pour effectuer du largage de parachutiste

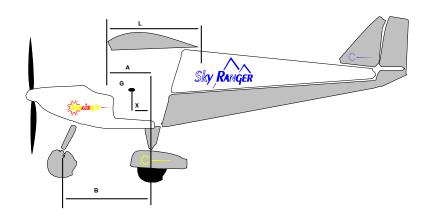
| 000000000000 |
|--------------|
|--------------|

Ce manuel est terminé. En cas de problèmes sur l'application ou la compréhension de ce document, rappelez votre revendeur :

#### **Revendeur:**

| Tél:    | <br> |  |
|---------|------|--|
| Fax:    |      |  |
| E-mail: | <br> |  |

## N'OUBLIEZ PAS DE REMPLIR LA FICHE DE RECEPTION DE VOTRE ULM


## I - FICHE DE RECEPTION DE VOTRE ULM

#### I.1 - Avertissement:

La mise à jour de cette fiche est fortement conseillée pour bien connaître votre appareil et remplir correctement votre carte d'identification. Toute modification future de votre ULM qui aura une répercussion sur la carte d'identification, devra faire l'objet d'une mise à jour auprès de votre district aéronautique (modification majeure). Pour faire les mesures en vol, vous devez demander par courrier simple auprès de votre District, une identification provisoire qui sera portée sur votre appareil <u>avant de voler</u>.

| I.2 - Mesures au sol :                                                                                                                                                                                                                                                                                     |                     |                                           |                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|--------------------------------------------------------|
| 1 - Masse maximale déclarée : (450 ou 472,5 kg) :                                                                                                                                                                                                                                                          | Mm                  | = kg                                      |                                                        |
| 2 - Masse à vide de référence (pesée réelle) :                                                                                                                                                                                                                                                             | Mvr                 | = kg                                      | (voir I.3 centrage)                                    |
| 3 - Masse à vide maximale :                                                                                                                                                                                                                                                                                | Mvm                 | =kg                                       |                                                        |
| 4 - Charge utile (Mm - Mvr)                                                                                                                                                                                                                                                                                | Mu                  | =kg                                       | 5                                                      |
| 5 - Nombre de sièges :2                                                                                                                                                                                                                                                                                    |                     |                                           |                                                        |
| 6 - Capacité des réservoirs :60 litres                                                                                                                                                                                                                                                                     |                     |                                           |                                                        |
| 7 - Type de moteur :                                                                                                                                                                                                                                                                                       |                     |                                           |                                                        |
| 8 - Type d'hélice : mettre son moment d'inertie et vérifier qu'il e<br>Hélice : Réducteur :                                                                                                                                                                                                                |                     | •                                         | réducteur :                                            |
| 9 - Surface alaire: 12.8 m <sup>2</sup>                                                                                                                                                                                                                                                                    |                     |                                           |                                                        |
| 10 - Référence manuel d'entretien : MESK                                                                                                                                                                                                                                                                   |                     |                                           |                                                        |
| 11 - Référence manuel d'utilisation : MUSK                                                                                                                                                                                                                                                                 |                     |                                           |                                                        |
| 12 - Relevé des cotes principales :<br>Comment savoir si votre appareil a été déformé après un choc<br>d'origine ?. Nous vous conseillons dans ce but de relever les<br>sur un sol horizontal cimenté, dans les conditions de <u>masse</u><br>Dimensions portées en mm : attention au gonflage des pneus o | principa<br>e à vid | ales cotes suiv<br><u>e</u> , relevées dè | antes en mettant l'appareil s les essais de réception. |
| - Hauteur du sol au tube acier coté droit et gauche STD : Hauteur du sol à l'aile droite (couture) : Tube bord d'attaque :                                                                                                                                                                                 | : .STD              | Tube bord de                              | fuite : STD                                            |
| - Hauteur du sol à l'aile gauche (couture) : Tube bord d'attaque                                                                                                                                                                                                                                           | : STD               | Tube bord                                 | de fuite : . STD                                       |
| <ul> <li>Hauteur du sol à l'attache inférieure du hauban : Droite</li> <li>Hauteur du sol à la pointe arrière de l'appareil (partie basse)</li> </ul>                                                                                                                                                      |                     |                                           | che:STD                                                |
| - Hauteur du sol au cône d'hélice : H = STD                                                                                                                                                                                                                                                                |                     |                                           |                                                        |
| - Atterrisseur : - Voie du train principal (distance entre les deux - Empattement (distance entre la roue AV et les                                                                                                                                                                                        |                     |                                           | <br>)                                                  |
| - Hélice : garde au sol : STD (au moins 2                                                                                                                                                                                                                                                                  | 200 mm              | )                                         |                                                        |

### I.3 - Centrage:



- Valeurs mesurées au sol:

A = ...74... cm (environ 74, à vérifier)

B = ..140... cm (environ 140 à vérifier)

- Position centre de gravité :

$$X = \begin{array}{c} Mav \\ X = & Masse totale \end{array}$$

- Centrage:

$$C\% = \frac{A - X}{148}$$

Cas 1 - Appareil à vide (masse à vide de référence) :

Cas 2 - Une personne à bord, si possible 55 kg, sans essence (centrage avant maxi en utilisation réelle) :

Mary = ....... Mt (masse totale) = ....... kg

Masse pilote: ....... Masse essence = .......  $X = \dots$   $C2\% = \dots$ %......

Cas 3 - Deux personnes à bord, si possible 156 kg, SANS essence :

 $Mav = \dots Mard = \dots Mt$  (masse totale) =  $\dots kg$ 

**Cas 4** - Deux personnes à bord **avec essence et bagages** (masse maxi de 450 kg ou 472,5 kg). Maximum de carburant, maximum de poids des personnes sans dépasser la masse maximale au décollage :

Mav = ......Mt (masse totale) = ......kg Masse pilotes : ......Masse essence : ......Masse bagages : 0.... X = ..................

Poids des baggages possible = 450 (ou 472) – (masse à vide + passagers + essence )=

Suivant les versions de moteurs et d'équipements, C1 à C4 doivent se situer entre 20% a vide et 35% maxi en charge. Avec un Rotax 582 on note un C1 de l'ordre de 21%. En augmentant la charge, le centrage doit normalement se situer de plus en plus en arrière mais sans dépasser la limite arrière de 35%.

|                  | Mav | Mard | Marg | M.     | Poids     | Poids      | Poids   | X | C%  |
|------------------|-----|------|------|--------|-----------|------------|---------|---|-----|
|                  |     |      |      | totale | passagers | essence    | bagages |   |     |
| 1-A vide         |     |      |      |        | Non       | Non        | Non     |   | C1= |
| 2-Maxi avant     |     |      |      |        |           | Non        | Non     |   | C2= |
| 3-Charge moyenne |     |      |      |        |           | NON        | Non     |   | C3= |
| 4-Maxi arrière   |     |      |      |        |           | 35 ou 50lt | N       |   | C4= |

#### I.4 - Mesures en vol:

1.3.1 - Vitesse de décrochage à pleine charge, dans les conditions standard, <u>lue sur le badin</u> :

- avec tous volets sortis : Vso = KH........ - sans volets : Vs1 = ..KH.......

Attention, si vous changer de badin, les mesures doivent être reprises.

1.3.2 - Vne : 195 km/h (indicateur de vitesse obligatoirement vérifié avant ce contrôle, par exemple avec un GPS). Jusqu'à cette valeur, aucun tremblement de la cellule.

#### 1.3.3 - Evaluation des performances :

Il suffit de posséder un vario (il en existe des modèles portatifs pour le vol libre) et de faire les mesures suivantes, <u>moteur tout réduit</u>. Vous montez à 700 mètres, 120 km/h et vous notez pour chaque vitesse indiquée sur votre badin, la Vz sur le vario. Mesures à faire seul à bord puis à 2 personnes, proche de la charge maximale. Restez quelques secondes à chaque vitesse pour que le vario puisse se stabiliser.

| Vz seul à   | FT/M  |
|-------------|-------|
| bord        |       |
| Vz à deux à | FT/MN |
| bord        |       |

Vous tracez les courbes appelées "polaires des vitesses". La tangente de l'origine sur la courbe vous donnera la vitesse correspondant à la finesse maximale en fonction de la charge. Vous devriez trouver de l'ordre de 80 km/h seul et 90 km/h à deux. La tangente horizontale sur la courbe vous donne la vitesse correspondant à la Vz mini (la vitesse qui correspond au temps où l'on restera le plus longtemps en l'air en cas de panne moteur). Pour les puristes, les mêmes mesures peuvent êtres faites avec un cran de volet puis deux crans.

Notez les valeurs définitives sans volets :

| - la | val | eur c | le. | la : | finesse | maximal | e | (V | horizonta | le en m/ | s di | visé | e par ' | V | vertica | le en | m/s | :) = | = |  |
|------|-----|-------|-----|------|---------|---------|---|----|-----------|----------|------|------|---------|---|---------|-------|-----|------|---|--|
|------|-----|-------|-----|------|---------|---------|---|----|-----------|----------|------|------|---------|---|---------|-------|-----|------|---|--|

- la <u>vitesse</u> de finesse maximale : seul à bord : ......km/h à deux : ......km/h

## I.5 - Mentions à porter sur l'indicateur de vitesse :

- début de l'arc vert : 1,1 Vs1 (vitesse de décrochage en lisse)

Par exemple si votre ULM indique au décrochage en lisse à la masse maximale 70 km/h, mettez le début de l'arc vert à 77 km/h

- fin de l'arc vert et début de l'arc jaune : 120 km/h

Cela veut dire que si les conditions sont très turbulentes, vous ne devrez pas voler au-dessus de 120 km/h

- fin de l'arc jaune : la Vne soit 205 km/h. On peut mettre un trait rouge à cette valeur.

Vous pouvez rajouter un arc blanc qui fixe les limites volets déployés :

- début à 1,1 Vso (vitesse de décrochage deux crans de volets sortis)

Par exemple si votre ULM indique au décrochage à la charge maximale 60 km/h, le début de l'arc blanc sera à 66 km/h. La fin de l'arc blanc sera à 120 km/h, vitesse maximale admissible volets sortis.

## 1.6 - Plaque signalétique :

Par sécurité, vous pouvez rajouter une plaque qui indiquera :

- la masse maximale au décollage déclarée
- la charge utile.

#### I..7 - Référence de votre ULM :

Si votre ULM porte la référence SKR 99.05.006 - yellow and red, ceci veut dire :

SKR : Skyranger

99 : année de fabrication05 : mois de fabrication

006:  $n^{\circ}$  du kit

yellow and red: toile jaune et rouge

skr no: SKR -- --

#### Modele FICHE DE PESEE ULM

Fiche conseil à l'attention des constructeurs amateurs

#### **METHODOLOGIE**

➤ Pesée à l'aide de 3 balances (aucun type de balance n'est préconisé)

Le centrage n'étant pas déterminé lors de cette pesée, l'aéronef peut se trouver dans une position quelconque, sur ses trois roues, sans recherche d'horizontalité latérale ou longitudinale. Il n'est donc pas nécessaire que les balances soient identiques, notamment en épaisseur.

## Si des cales sont interposées entre la balance et les roues de l'appareil, ne pas oublier de les peser comme tares.

▶ Pesée à l'aide d'une seule balance (aucun type de balance n'est préconisé)

Il faut, dans ce cas, disposer de deux cales d'épaisseur identique à celle de la balance.

La balance est déplacée sous chacune des roues en lieu et place de la cale d'épaisseur.

Si une cale est interposée entre la balance et la roue, son épaisseur devra être rajoutée à l'épaisseur des deux cales représentatives de la balance.

Pour les ULM des classes 1, 2, 3 monoplaces et sous-classes 1A, 2A et 3A, la pesée peut s'effectuer avec une tare ou avec la personne portant l'ULM en veillant à déduire la masse préalablement évaluée de la tare ou de la personne.

| <u>FICHE DE PESEE</u>     |                     |                 |           |
|---------------------------|---------------------|-----------------|-----------|
|                           | FICHE DE            | PESEE           |           |
|                           |                     |                 |           |
| Appellation ou type d'ULM | M                   |                 |           |
| Code d'identification (1) |                     |                 |           |
| Identification (2)        |                     | Numéro de série |           |
| Notions de masse a        | précisées en annexe |                 |           |
| Masse à vide de référence | kg                  |                 |           |
| Masse à vide              | kg                  |                 |           |
| Date:                     | Lieu de la pesée :  |                 |           |
| Nom et prénom du respor   | sable de la pesée : |                 | Signature |

code d'identification : référence de la fiche d'identification ou du formulaire de référence du dossier technique.

(1) identification composée du numéro du département du lieu d'attache de l'ULM suivi de deux ou trois lettres. A remplir si l'ULM est déjà enregistré ou si l'identification est connue du nouveau propriétaire.

#### Annexe: notions de masse pour les ULM

#### 1 – Masse à vide

#### C'est la masse de l'ULM:

- sans occupant ni chargement (bagage, lest amovible etc.)
- sans carburant hormis le carburant inutilisable
- avec le lest fixe
- avec les quantités maxi de liquides nécessaires au fonctionnement normal de l'ULM (ex : huile, liquide réfrigérant, liquide hydraulique)

La masse à vide varie en fonction de la configuration de l'ULM et des équipements installés. Toute modification de l'ULM (modification de structure, ajout ou retrait d'un équipement) modifie sa masse à vide.

#### <u>Utilité pratique:</u>

- la personne chargée de l'entretien de l'ULM doit s'assurer en permanence (i.e. à chaque modification de l'ULM) que la masse à vide de l'ULM est inférieure ou égale à la masse à vide maximale fixée par le constructeur de l'ULM (voir § 3 ci-dessous) ;
- à l'issue de la fabrication de l'ULM et après toute modification importante de l'ULM, elle doit être établie par pesée;
- en cas de modification légère dont on peut connaître avec exactitude l'impact sur la masse (pose ou démontage d'un équipement de masse connue), elle peut être dérivée par calcul.

#### 2 - Masse à vide de référence

C'est la masse à vide de l'ULM dans la configuration (structure et équipements) dite "de référence". Cette configuration de référence est choisie par le constructeur. Elle doit :

- correspondre à un ULM en état de vol (c'est-à-dire répondant aux exigences de l'arrêté ULM et à celles de l'arrêté du 24 juillet 1991) ;
- être très précisément définie et facilement reproductible. En effet les Services Officiels peuvent demander au constructeur de mettre à leur disposition un ULM dans la configuration de référence.

#### <u>Utilité pratique:</u>

- pour le propriétaire et le pilote : aucune ;
- pour les Services Officiels, elle permet d'effectuer un contrôle de la validité de la déclaration du constructeur.

#### 3 – Masse à vide maximale

C'est la limite supérieure des masses à vides autorisées pour l'ULM (voir §1 ci-dessus).

Elle est fixée par le constructeur de l'ULM et apparaît sur la fiche d'identification. Lors de son établissement, le constructeur doit respecter un critère de charge utile minimum (écart minimum entre la masse à vide maximale et la masse maximale - voir aussi § 4 ci-dessous) :

- pour les monoplaces : 86 kg plus une heure de carburant à la puissance maxi continue ;
- pour les biplaces : 156 kg plus une heure de carburant à la puissance maxi continue.

## <u>Utilité pratique :</u>

- la personne chargée de l'entretien de l'ULM doit s'assurer en permanence (i.e. à chaque modification de l'ULM) que la masse à vide de l'ULM est inférieure ou égale à la masse à vide maximale fixée par le constructeur de l'ULM;

#### 4 – Masse maximale

C'est la masse maximale autorisée en utilisation.

Elle est définie par le constructeur et apparaît sur la fiche d'identification. En plus du critère de charge utile minimum (voir § 3 ci-dessus), le constructeur doit respecter pour son établissement des limites forfaitaires (ex : 450 kg pour un biplace sans parachute) et des critères de navigabilité (résistance structurale, qualités de vol etc.). Utilité pratique :

| - | le pilote doit veiller pour chaque vol à ce que la masse de l'ULM ne dépasse pas la masse maximale. |
|---|-----------------------------------------------------------------------------------------------------|
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |